DPDK中RCU实现

[TOC]

概述

dpdk19.01提供了qsbr模式的rcu库,其具体实现在lib/librte_rcu目录中。
librte_rcu是无锁线程安全的,这个库提供了读者报告静默状态的能力,让写者知道读者是否进入过静默状态。

dpdk中QSBR具体实现是通过一个struct rte_rcu_qsbr_cnt变量qs,将多个线程共享的内存管理起来。总体思路是通过比较线程的静默期版本号与qs全局版本号的大小,判断是否所有线程进入过本次静默期。

使用librte_rcu进行内存释放的线程的基本步骤如下:

  • 解除内存的引用
  • 调用rte_rcu_qsbr_start()函数将全局版本号加1,触发所有读线程报告静默状态
  • 调用rte_rcu_qsbr_check()遍历检查所有读者线程,确保都进入过本次静默期
  • 释放内存

初始化

初始化时,会用到一些通过的工具宏,定义在在dpdk-master/lib/librte_eal/common/include/rte_common.h中。如下:

#define RTE_CACHE_LINE_SIZE 64#define RTE_ALIGN_MUL_CEIL(v, mul) \    ((v + 64 - 1)/64) * 64 // (64地板除 + 1)*64#define RTE_ALIGN_FLOOR(val, 64) \    val & (~(64 - 1)) // 64的地板除#define RTE_ALIGN_CEIL(val, 64) \    RTE_ALIGN_FLOOR(val + 64 - 1, 64) // 64的地板除 + 1#define RTE_ALIGN(val, align) RTE_ALIGN_CEIL(val, align) // 64的地板除 + 1

dpdk-master\lib\librte_rcu\rte_rcu_qsbr.h中,定义了初始化时用到的一些函数与宏。

/* 工作线程计数器 */struct rte_rcu_qsbr_cnt {    uint64_t cnt; // 静默态计数器,0表示下线。使用64bits,防止计数溢出    uint32_t lock_cnt; // counter锁, 用于CONFIG_RTE_LIBRTE_RCU_DEBUG} __rte_cache_aligned;#define __RTE_QSBR_THRID_ARRAY_ELM_SIZE (sizeof(uint64_t) * 8) // 数组元素大小为64 B#define __RTE_QSBR_THRID_ARRAY_SIZE(max_threads)\      RTE_ALIGN(RTE_ALIGN_MUL_CEIL(max_threads, 64) >> 3, RTE_CACHE_LINE_SIZE) // 计算得到线程数组的大小/* * (struct rte_rcu_qsbr_cnt *)(v + 1): 获得 v中 rte_rcu_qsbr_cnt 的地址偏移,此时指针p变为 struct rte_rcu_qsbr_cnt *类型 * + v->max_threads: 得到 v中thread id_array的偏移, * + i */#define __RTE_QSBR_THRID_ARRAY_ELM(v, i)  // 获得线程数组的第 i 个     ((uint64_t *) ((struct rte_rcu_qsbr_cnt *)(v + 1) + v->max_threads) + i)  #define __RTE_QSBR_THRID_INDEX_SHIFT 6#define __RTE_QSBR_THRID_MASK 0x3f#define RTE_QSBR_THRID_INVALID 0xffffffff/*   * 获得QSBR变量的内存大小,包括rte_rcu_qsbr + thread ID bitmap array变量*/size_trte_rcu_qsbr_get_memsize(uint32_t max_threads){    size_t sz;  // rcu_qsbr    sz = sizeof(struct rte_rcu_qsbr);    /* Add the size of quiescent state counter array */    sz += sizeof(struct rte_rcu_qsbr_cnt) * max_threads;    /* Add the size of the registered thread ID bitmap array */    sz += __RTE_QSBR_THRID_ARRAY_SIZE(max_threads);     return sz;}

qsbr rcu真正的初始化在函数rte_rcu_qsbr_init()中,主要是初始化变量的值。

intrte_rcu_qsbr_init(struct rte_rcu_qsbr *v, uint32_t max_threads){    size_t sz;    sz = rte_rcu_qsbr_get_memsize(max_threads);    if (sz == 1)        return 1;    /* Set all the threads to offline */    memset(v, 0, sz); // 获得大小,初始化为零    v->max_threads = max_threads;    v->num_elems = RTE_ALIGN_MUL_CEIL(max_threads,            __RTE_QSBR_THRID_ARRAY_ELM_SIZE) /            __RTE_QSBR_THRID_ARRAY_ELM_SIZE; // 根据最大线程数,获得 thread_id array的元素个数    v->token = __RTE_QSBR_CNT_INIT;    v->acked_token = __RTE_QSBR_CNT_INIT - 1;    return 0;}

其中, rte_rcu_qsbr_init 函数中的参数中,传入了全局变量rte_rcu_qsbr,其存储了静默期版本号,以及所有注册了的线程的thread_Id与局部静默期版本号。
此变量定义如下:

struct rte_rcu_qsbr {    uint64_t token __rte_cache_aligned;  // 允许多个并发静态查询的计数器    /**< Counter to allow for multiple concurrent quiescent state queries */    uint64_t acked_token;    /**< Least token acked by all the threads in the last call to     *   rte_rcu_qsbr_check API.     */    uint32_t num_elems __rte_cache_aligned;    /**< Number of elements in the thread ID array */    uint32_t num_threads;    /**< Number of threads currently using this QS variable */    uint32_t max_threads;    /**< Maximum number of threads using this QS variable */    struct rte_rcu_qsbr_cnt qsbr_cnt[0] __rte_cache_aligned;    /**< Quiescent state counter array of 'max_threads' elements */    /**< Registered thread IDs are stored in a bitmap array,     *   after the quiescent state counter array.     */} __rte_cache_aligned;

注册与注销

通过rte_rcu_qsbr_thread_register函数,注册一个读者线程的thread_id到 全局变量 rte_rcu_qsbr 的 thread 数组位图中,并更新线程数num_threads

intrte_rcu_qsbr_thread_register(struct rte_rcu_qsbr *v, unsigned int thread_id){    unsigned int i, id, success;    uint64_t old_bmap, new_bmap;    id = thread_id & __RTE_QSBR_THRID_MASK;  // thread_id%64, 表示bits<64>中位图中的哪一位    i = thread_id >> __RTE_QSBR_THRID_INDEX_SHIFT;  // thread_id/64,表示uint64_t数组的索引     /*      * 确保已注册线程的计数器不会不同步。因此,需要额外的检查。      */    old_bmap = __atomic_load_n(__RTE_QSBR_THRID_ARRAY_ELM(v, i),                    __ATOMIC_RELAXED); // 获得 thread_id所在的 bits<64>    if (old_bmap & 1UL << id) // bits<64>中的id位是否为1        return 0; // 等于1,表示已注册,则返回    do { // 若没有注册,则注册,并对num_threads + 1        new_bmap = old_bmap | (1UL << id); /        success = __atomic_compare_exchange(                    __RTE_QSBR_THRID_ARRAY_ELM(v, i),                    &old_bmap, &new_bmap, 0,                    __ATOMIC_RELEASE, __ATOMIC_RELAXED);        if (success)            __atomic_fetch_add(&v->num_threads,  // 加1                        1, __ATOMIC_RELAXED);        else if (old_bmap & (1UL << id)) // 抢注册            return 0;    } while (success == 0);    return 0;}

通过rte_rcu_qsbr_thread_unregister函数将读线程的thread_id 从全局变量 rte_rcu_qsbr 的 thread数组位图中移除。

intrte_rcu_qsbr_thread_unregister(struct rte_rcu_qsbr *v, unsigned int thread_id){    unsigned int i, id, success;    uint64_t old_bmap, new_bmap;    __RTE_RCU_IS_LOCK_CNT_ZERO(v, thread_id, ERR, "Lock counter %u\n",                v->qsbr_cnt[thread_id].lock_cnt);    id = thread_id & __RTE_QSBR_THRID_MASK;    i = thread_id >> __RTE_QSBR_THRID_INDEX_SHIFT;    /* Make sure that the counter for registered threads does not     * go out of sync. Hence, additional checks are required.     */    /* Check if the thread is already unregistered */    old_bmap = __atomic_load_n(__RTE_QSBR_THRID_ARRAY_ELM(v, i),                    __ATOMIC_RELAXED);    if (!(old_bmap & (1UL << id)))        return 0;    do {        new_bmap = old_bmap & ~(1UL << id);        /* Make sure any loads of the shared data structure are         * completed before removal of the thread from the list of         * reporting threads.         */        success = __atomic_compare_exchange(                    __RTE_QSBR_THRID_ARRAY_ELM(v, i),                    &old_bmap, &new_bmap, 0,                    __ATOMIC_RELEASE, __ATOMIC_RELAXED);        if (success)            __atomic_fetch_sub(&v->num_threads,                        1, __ATOMIC_RELAXED);        else if (!(old_bmap & (1UL << id)))            /* Someone else unregistered this thread.             * Counter should not be incremented.             */            return 0;    } while (success == 0);    return 0;}

上线与下线

线程的上线通过rte_rcu_qsbr_thread_online()函数将局部静默期版本号更新到全局版本。
rte_rcu_qsbr_thread_online()函数的简化版本如下:

static __rte_always_inline voidrte_rcu_qsbr_thread_online(struct rte_rcu_qsbr *v, unsigned int thread_id){    uint64_t t;    t = __atomic_load_n(&v->token, __ATOMIC_RELAXED); // 获得全局版本号    __atomic_store_n(&v->qsbr_cnt[thread_id].cnt, // 更新本线程的局部静默期版本号        t, __ATOMIC_RELAXED);}

线程的下线就是通过rte_rcu_qsbr_thread_offline()函数,将局部静默期版本号设置为0。

__rte_experimentalstatic __rte_always_inline voidrte_rcu_qsbr_thread_offline(struct rte_rcu_qsbr *v, unsigned int thread_id){    __atomic_store_n(&v->qsbr_cnt[thread_id].cnt, 0, __ATOMIC_RELEASE);}

等待静默

通过rte_rcu_qsbr_synchronize()函数等待所有线程进入过静默期,其主要工作如下:

  • 首先,对全局的静默期的版本加1;
  • 然后,判断本线程局部静默期版本是否等于全局的,若不等于,则更新到最新;
  • 最后,遍历所有注册了的并且在线的线程的静默期版本号cnt的值,确定是否所有线程都进入过本次静默期,若没有,则等待所有读线程都进入过静默状态。
voidrte_rcu_qsbr_synchronize(struct rte_rcu_qsbr *v, unsigned int thread_id){    uint64_t t;    t = rte_rcu_qsbr_start(v); // 将 v->token 加1,并存储在局部变量中    /* 若当前线程还在临界区,更新其静默状态 */    if (thread_id != RTE_QSBR_THRID_INVALID) // 0xffffffff        rte_rcu_qsbr_quiescent(v, thread_id);  // 更新本线程的 v->qsbr_cnt[thread_id].cnt 到最新token    /* 等待其他读者进入静默期 */    rte_rcu_qsbr_check(v, t, true); }

注意:
线程每调用一次rte_rcu_qsbr_synchronize()函数,全局的静默期版本号token就会加1。
因为多个线程同时调用此函数,线程的局部静默期版本号cnt一般会小于全局好几个版本。
事实上,若线程调用了一次rte_rcu_qsbr_synchronize(),其版本号就会大于存储在其他线程局部变量t中的全局版本号。

具体是通过rte_rcu_qsbr_check()判断所有线程是否都进行了本次静默。

__rte_experimentalstatic __rte_always_inline intrte_rcu_qsbr_check(struct rte_rcu_qsbr *v, uint64_t t, bool wait){    /* 判断是否所有线程都进入过静默期 */    if (likely(t <= v->acked_token))        return 1;    /* 若没有确认过,则遍历线程确认。 */    if (likely(v->num_threads == v->max_threads))        return __rte_rcu_qsbr_check_all(v, t, wait);    else        return __rte_rcu_qsbr_check_selective(v, t, wait);}

其中,__rte_rcu_qsbr_check_all()函数与__rte_rcu_qsbr_check_selective()函数类似,
都是通过遍历注册在thread_id array中的所有线程的cnt,判断是否所有线程进入过静默期。下面,以函数__rte_rcu_qsbr_check_all()进行说明。

static __rte_always_inline int__rte_rcu_qsbr_check_selective(struct rte_rcu_qsbr *v, uint64_t t, bool wait){    uint32_t i, j, id;    uint64_t bmap;    uint64_t c;    uint64_t *reg_thread_id;    uint64_t acked_token = __RTE_QSBR_CNT_MAX;  // ((uint64_t)~0)    /* 遍历注册在thread_id array中的所有线程的版本,等待所有线程进入过静默期 */    for (i = 0, reg_thread_id = __RTE_QSBR_THRID_ARRAY_ELM(v, 0); // 获得第0个 thread_id array元素        i < v->num_elems; // thread_id array 元素个数        i++, reg_thread_id++) {        /* 获得bmap所标识的所有线程id的公共前缀 */        bmap = __atomic_load_n(reg_thread_id, __ATOMIC_ACQUIRE);        id = i << __RTE_QSBR_THRID_INDEX_SHIFT; //         while (bmap) {            /* 获得线程的id,以及对应的计数器 */            j = __builtin_ctzl(bmap); // bmap中的第一个注册线程            c = __atomic_load_n( // 获得线程id的cnt                    &v->qsbr_cnt[id + j].cnt, // id + j = thread_id                    __ATOMIC_ACQUIRE);             /* 若线程没有下线,并且静默期号小于t,则等待,直到其大于等于 */            if (unlikely(c != __RTE_QSBR_CNT_THR_OFFLINE && c < t)) {                /* This thread is not in quiescent state */                if (!wait) // 若不等待则直接返回                    return 0;                 rte_pause(); // 暂定CPU执行一小段时间                bmap = __atomic_load_n(reg_thread_id, // 重新查看未退出注册的线程,是否进入静默期                        __ATOMIC_ACQUIRE);                continue;            }             /* 更新acked_token到最新版本 */            if (c != __RTE_QSBR_CNT_THR_OFFLINE && acked_token > c)                  acked_token = c;            bmap &= ~(1UL << j);        }    }    if (acked_token != __RTE_QSBR_CNT_MAX)        __atomic_store_n(&v->acked_token, acked_token,  // 若所有的读者都已经进入过静默期,则将最新的静默期版本更新            __ATOMIC_RELAXED);    return 1;}

示例:
dpdk/app/test/test_rcu_qsbr.c中,

附录

  1. type __atomic_load_n (type *ptr, int memorder),GCC内建函数,实现原子的加载操作,返回*ptr
    有限的 memorder有:__ATOMIC_RELAXED, __ATOMIC_SEQ_CST, __ATOMIC_ACQUIRE, __ATOMIC_CONSUME

目前最新版本的gcc、clang的原子操作实现均符合c++11定义的原子操作6种内存模型:

__ATOMIC_RELAXED No barriers or synchronization.
__ATOMIC_CONSUME Data dependency only for both barrier and synchronization with another thread.
__ATOMIC_ACQUIRE Barrier to hoisting of code and synchronizes with release (or stronger) semantic stores from another thread.
__ATOMIC_RELEASE Barrier to sinking of code and synchronizes with acquire (or stronger) semantic loads from another thread.
__ATOMIC_ACQ_REL Full barrier in both directions and synchronizes with acquire loads and release stores in another thread.
__ATOMIC_SEQ_CST Full barrier in both directions and synchronizes with acquire loads and release stores in all threads.

详见 http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync

  1. void __atomic_store_n (type *ptr, type val, int memorder),GCC内建函数,实现原子的存操作,将val的值写入*ptr。

  2. __builtin_ctz(x):
    计算器x二进制表示,末尾有多少个0。
    例如,a = 16,其二进制表示是 00000000 00000000 00000000 00010000,输出为ctz = 4
    类似的函数有__builtin_ctzl(x)__builtin_ctzll(x),分别用于long类型,与long long类型的数据。

  3. static void rte_pause(void): 暂停CPU执行一段时间, 此调用用于轮询共享资源或等待事件的紧循环。在回路中短暂的停顿可以降低功耗。

原文阅读

微信公共号

NFVschool,关注最前沿的网络技术。
![]()

参考

Was this helpful?

0 / 0

发表回复 0